0

Vikipedia'dan (Artık herkes ulaşamadığı için kolayca, kopyala yapıştır yapmak zorunda kaldık.) Işıktan hızlı deneyler ve gözlemler Bazı durumlarda enerji, cisimler ya da bilgi ışıktan hızlı hareket ediyormuş gibi gözükse de etmezler. Örneğin; aşağıdaki "ışığın bir çevrede yayılması"nda bazı dalgaların hızı c'yi geçebilir. Örneğin, x-ray ışınlarının çoğu camdaki faz hızı c'yi geçmektedir ancak faz hızı dalgaların bilgiyi yayma hızını göstermez.[13] Eğer bir lazer ışını uzaktaki bir nesne üzerinde hızlıca gezdirilirse, ışık noktasının ilk hareketi ışığın uzaktaki nesneye ulaşma süresi nedeniyle gecikse de, ışık noktası c'den hızlı hareket edebilir. Ancak, yalnızca hareket eden fiziksel varlıklar lazer ve onun yaydığı ışıktır ve lazerden değişik noktalara ışık hızında hareket ederler. Benzer olarak, uzaktaki bir gölge de zamanda bir gecikmeden sonra ışıktan hızlı hareket ettirilebilir. İki durumda da herhangi bir madde, enerji ya da bilgi ışıktan hızlı hareket etmez.[14] Hareket eden iki referans çerçevesi arasındaki mesafenin değişme oranı c'nin üzerinde bir değere sahip olabilir. Ancak, bu hareketsiz bir çerçeve içinde ölçülen herhangi bir cisimin hızını yansıtmaz.[14] Bazı quantum etkileri, EPR paradox'unda olduğu gibi, anında, yani c'den hızlı olarak aktarılıyormuş gibi gözükebilir. Bir örnek birbirine girmiş iki parçacığın quantum durumlarını içermektedir. İki parçacıktan herhangi biri incelenene kadar parçacıklar üst üste gelmiş iki quantum durumu içinde var olurlar. Eğer parçacıklar ayrılıp birinin quantum durumu incelenirse ötekinin quantum durumu anında belirlenmiş olur. Ancak, ilk parçacığın gözlemlendiğinde hangi quantum durumunu kontrol etmek mümkün olmadığı için bilgi bu yolla yayılamaz. [14][15] Işıktan hızlı hızları tahmin eden başka bir quantum etkisi de Hartman Etkisi'dir. Belirli koşullar altında, yapay bir parçacığın bir bariyerden geçmesi için gereken zaman, bariyerin kalınlığı ne olursa olsu, sabittir. Bu, yapay parçacığın geniş bir boşluğu ışıktan hızlı bir şekilde geçmsiyle sonuçlanabilir. Ancak, bu etki kullanılarak herhengi bir bilgi gönderilemez.[16] Sözde ışıktan hızlı hareket, radyogalakilserin göreceli jetleri, yıldızsı gök cisimleri gibi astronomik nesnelerde gözlemlenebilir. Ancak, bu jetler ışıktan hızlı hareket etmemektedir. Göze ışıktan hızlı gelen hareket cismin ışık hızına yaklaşmasının ve dünyaya düşük bir görüş açısıyla yaklaşmasının sonucudur.[17] Genişleyen evrenin modellerinde galaksiler ne kadar uzaklarsa birbirlerinden o kadar hızlı uzaklaşırlar. Ayrılma uzaydaki hareketin değil, uzayın genişlemesinin sonucudur. Örneğin, dünyaya uzak olan galaksiler dünyaya olan uzaklarıyla orantısal bir hızla uzaklaşırlar. [18] Işığın yayılımı Klasik fizikte ışık elektromanyetik dalga olarak sınıflandırılmıştır. Elektromanyetik alanların klasik hareketi Maxwell denklemleriyle tanımlanmıştır. Bu denklemlerde, elektromanyetik dalgaların boşluktaki yayılma hızı olan c elektrik sabite ve manyetik sabite c = 1/√ε0μ0.[19] Modern kuantum fizikte elektromanyetik alan kuantum elektrodinamik teorisiyle(QED) tanımlanmaktadır. Bu teoride ışık, elektromanyetik alanın temel çıkışı olan fotonlarla tanımlanır. QED'ye göre fotonlar kütlesiz parçacıklardır ve boşlukta ışık hızıyla hareket ederler. QED'nin fotonun kütleye sahip olduğu genişlemeleri de düşünülmüştür. Böyle bir teoride fotonun hızı frekansına bağlı olur ve değişmez c hızı ışığın boşluktaki hızının üst limiti olur. Işığın hızında testlerde herhangi bir değişim gözlenmemiştir ve bu da fotounun kütlesine sıkı bir limit koymaktadır. Elde edilen limit kullanılan modele göre değişebilir. Işığın hızının frekansına bağlı olarak değişmesinin başka bir sebebi de, quantum yerçekimindeki bazı teorilerde tahmin edildiği gibi, özel göreliliğin gelişi güzel küçüklükteki durumlarda uygulanamaması olabilir. 2009'da gamma ışını patlaması GB 090510'un gözlemlerinde farklı enerjilerdeki fotonların hızında bir değişme gözlemlenmemiştir, bu da Lorentz değişmezinin en azından Planck Uzunluğu'nun 1.2'ye bölümüne kadar onaylanması demektir. [20] Ortam İçinde Bir çevrede ışık genel olarak c'ye eşit bir hızda yayılmaz; daha da fazlası, değişik ışık dalgaları değişik hızlarda ilerleyebilir. Düz bir dalganın ( bir frekansla bütün uzayı doldurabilen dalga) tavan ve taban yaparak yayıldığı hıza faz hızı denir. Ölçülebilir bir uzunluğu(ışık nabzı) olan gerçek bir fiziksel işaret farklı bir hızda ilerler. Nabzın en büyük bölümü grup hızında ilerlerken erken kısımları ön hızla ilerler. A modulated wave moves from left to right. There are three points marked with a dot: A blue dot at a node of the carrier wave, a green dot at the maximum of the envelope, and a red dot at the front of the envelope. Mavi nokta dalgalanma hızıyla (faz hızı) ile hareket eder, yeşil nokta kabuk hızıyla (grup hızı) ile hareket eder, kırmızı nokta ise titreşimin ön kısmıyla (ön hızı) ile hareket eder. Faz hızı ışın bir maddede ya da bir maddeden ötekine nasıl ilerlediğini belilerken önemlidir. Kırılma endeksi olarak temsil edilir. Bir maddenin kırılma endeksi, c'nin maddedeki faz hızına oranı olarak tanımlanır. Bir maddenin kırılma endeksi ışığın frekansına, yoğunluğuna, polarizasyonuna ya da yayılma yönüne bağlı olabilir ama çoğu durumlarda maddeye bağlı bir sabit olarak görülebilir. Havanın kırılma endeksi yaklaşık olarak 1.0003'tür. Bose- Einstein Yoğuşuğu gibi egzotik maddelerde kırılma endeksi sıfıra yakın olabilir, bu da ışığın hızını saniyede yalnızca birkaç metreye kadar düşürebilir. Ancak, bu atomlar arasındaki emilim ve tekrar yayılma geçikmesini temsil eder. Işığın maddede yavaşlamasını ölmek için iki farklı fizikçi takımı ışığı rubidium elementinden yapılma bir Bose-Einstein Yoğuşuğu kullanarak durdurmayı denediler. Ancak bu denelerdeki "ışığın durması" tanımı yalnızca ışığın atomun daha kararsız hallerinde depolanması ve daha sonra gelişi güzel bir zamanda tekrar yayılması şeklinde olmuştur. "Durduğu" sürede ışık olmayı bırakmıştır. Bu tarz davranış genel olarak ışığı yavaşlatan tüm çevreler için doğrudur. Şeffaf maddelerde kırılma endeksi genelde 1'den büyüktür, yani faz hızı c'den küçüktür. Öteki materyallerde kırılma endeksinin bazı frekanslarda 1'den küçük olması olasıdır; bazı egzotik maddelerde kırılma endeksinin negatif olması dahi olasıdır. Nedenselliğin bozulmaması gereksinimi herhangi bir maddenin dieletrik sabitinin gerçek ve sanal kısımlarının Kremars- Kronig ilişkisiyle bağlı olduğunu ima eder. Pratic olarak, kırılma endeksinin 1'den küçük olduğu maddelerde dalganın emilimi o kadar hızlıdır ki c'den daha hızlı bir sinyal gönderilemez. Farklı grup ve faz hızları olan bir nabız zaman içinde biter. Bu süreç ayrılım olarak bilinir. Bazı maddeler ışık dalgaları için çok düşük grup hızlarına sahiptir, yavaş ışık olarak adlandırılan ve deneylerle onaylanmış bir fenomen. Tam tersi, c'yi aşan grup hızları, aynı zamanda deneylerde gözlemlenmiştir. Anlık ya da zamanda geriye doğru hareket eden nabızlar için grup hızın sonsuz olması ya da negatif çıkması da mümkün olmalıdır.[21] Ancak, bu seçeneklerin hiçbiri bilginin c'den daha hızlı aktarılmasını sağlamaz. Erken kısımlarından daha hızlı bir nabızla bilgi yollamak mümkün değildir. [21] Bir parçacığın bir maddenin içinde o maddenin faz hızından daha hızlı ilerlemesi mümkündür. Yüklü bir parçacık bunu iletken olmayan bir maddenin içinde yaptığı zaman Cherenkov Radyasyonu olarak bilinen bir şok dalgası yayılır. .[22]

Hiç Kimseyle Tartışmaz 7 yıl önce 0
0